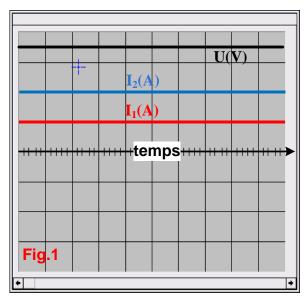

Le déphasage

S0.2 circuits parcourus par un courant alternatif

Sommaire

1) En continu	2
2) En alternatif	
Rappels : Grandeurs caractéristiques du réseau monophasé	2
Le déphasage :	3
3) Loi d'ohm généralisée	4
4) Représentation vectorielle	4
Cas N°2	5
Cas N°3	5
Cas N°4	5
5) Loi des nœuds généralisée	5
Applications:	5
Etude N°1	6
Etude N°2:	6
6) Valeurs instantanées	7
Rappels de trigonométrie :	8
Faisons décrire à un vecteur V un tour de cercle complet et considérons les 3 positions du vecteur :	
Construction d'une sinusoide	9
Relation permettant la représentation de la tension instantanée du réseau français	10


1) En continu

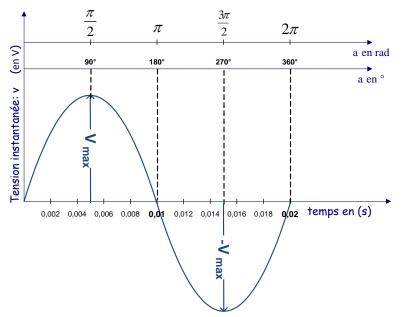
En continu, seule la valeur de la résistance du récepteur agit sur le courant consommé : $R(\Omega)$ règle le courant I à la valeur :

I =

Exemple: Un générateur de courant continu débite dans deux charges résistives (lampes...etc.).

CAS N°1: continu pur

L'oscillogramme **Fig.1** implique que $R_1 > R_2$ car $I_1 < I_2$ ce qui se traduit par une position différentes des deux courants dans le plan vertical.


On peut d'ailleurs appliquer graphiquement la loi des nœuds en construisant le courant I :

I =

Note : Le mesurage de courant électrique à l'aide d'un oscilloscope sera étudié dans un prochain chapitre.

2) En alternatif

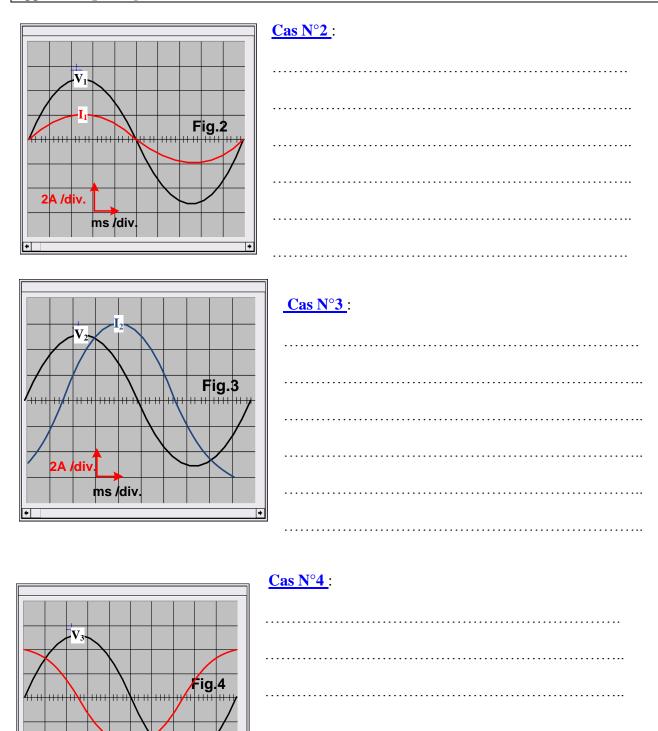
• Rappels : Grandeurs caractéristiques du réseau monophasé

La valeur maximale : $\hat{\mathbf{V}}$

La valeur efficace : V =

La valeur moyenne: $\langle V \rangle =$

Fréquence : —


Pulsation:

• Le déphasage :

ms /div.

En alternatif, l'intensité d'un courant est liée à son amplitude (voir leçon formes de courant), mais la fréquence f (Hz) du réseau d'alimentation est responsable de l'apparition d'un phénomène supplémentaire visible sur les oscillogrammes ci-dessous appelé « déphasage »: Fig.2; Fig.3; Fig.4;

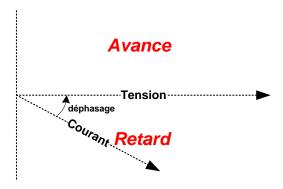
Le **décalage** dans le temps de l'apparition du courant par rapport à la tension qui le génère est appelé « **déphasage** ».

3) Loi d'ohm généralisée

 \rightarrow En alternatif, comme en continu, l'intensité du courant électrique est fixée par la charge (récepteur); Une grandeur supplémentaire notée X (réactance en Ω) apparaît dans les circuits inductifs et vient s'ajouter à la résistance pour former l'impédance Z (Ω):

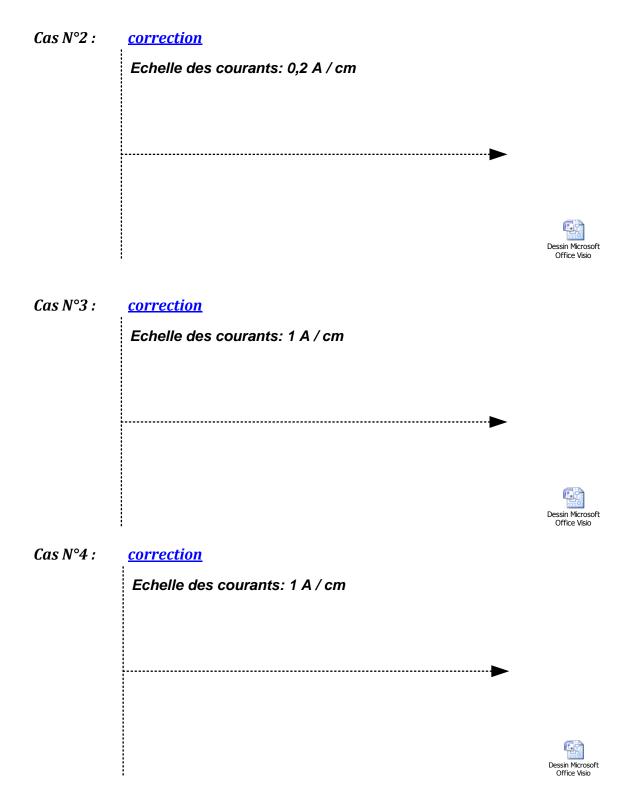
$$\vec{Z} = \vec{R} + \vec{X}$$
 (grandeurs vectorielles)

→ Nous retiendrons, dans un premier temps, que la loi d'ohm généralisée s'écrit dorénavant :


$$U =$$

4) Représentation vectorielle

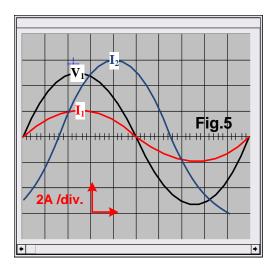
Principe:


Les différentes valeurs instantanées se représentent vectoriellement pour gagner en lisibilité : V et I sont représentés à l'aide de flèches orientées dont la longueur (module) correspond à la valeur efficace des tensions ou des courants : l'échelle est choisie de manière à obtenir une reproduction précise des grandeurs désirées.

- → La tension est tracée horizontalement.
- → Le courant est représenté suivant son avance ou son retard par rapport à la tension et suivant son déphasage mesuré par rapport à la tension.
- \rightarrow Les grandeurs vectorielles sont notées comme ceci : \vec{I} ; \vec{V}

Etudes de cas:

Reprenons les exemples étudiés précédemment et effectuons la construction vectorielle des courants et des tensions.


5) Loi des nœuds généralisée

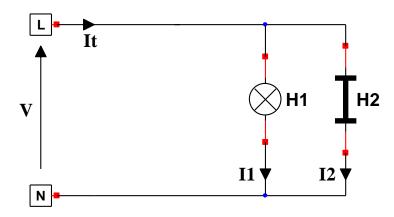
La représentation vectorielle permet d'effectuer facilement des opérations entre les différentes grandeurs électriques : Lorsque plusieurs **courants alternatifs** doivent être additionnés afin de dimensionner une installation, on utilise toujours la représentation vectorielle car elle permet d'obtenir un résultat précis et rapide¹.

Applications:

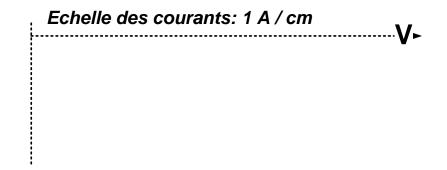
_

¹ D'autres méthodes permettent de parvenir aux mêmes résultats mais elles sont beaucoup plus longues et compliquées.

Etude N°1: correction

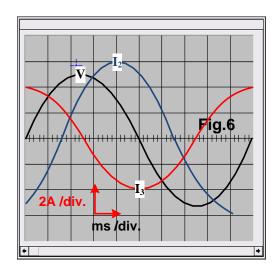

Déterminons graphiquement la valeur du courant qui correspond à la somme des cas N°1 et N°2:

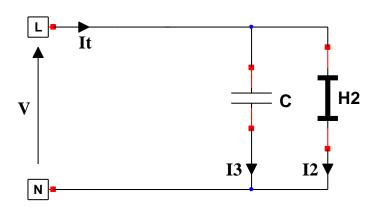
$$\vec{I}_t = \vec{I}_1 + \vec{I}_2$$

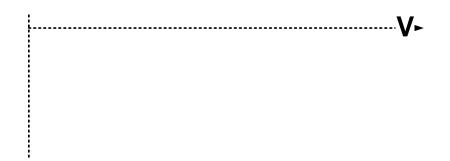

 $ec{I}_t = ec{I}_1 + ec{I}_2$ Une solution graphique autre que vectorielle est-elle possible?

Cette étude revient à examiner le fonctionnement d'un récepteur **résistif** en dérivation avec un récepteur de type inductif: un circuit éclairage à incandescence en dérivation avec de l'éclairage fluorescent comme ci-dessous par

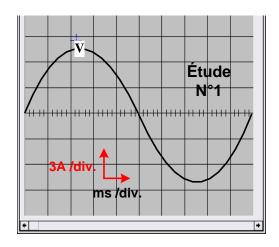
exemple.

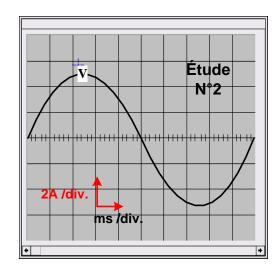



Détermination graphique par construction vectorielle du courant $\vec{I}_t = \vec{I}_1 + \vec{I}_2$



Récepteur inductif en dérivation avec un récepteur de type capacitif : cas $N^\circ 3$ et cas $N^\circ 4$



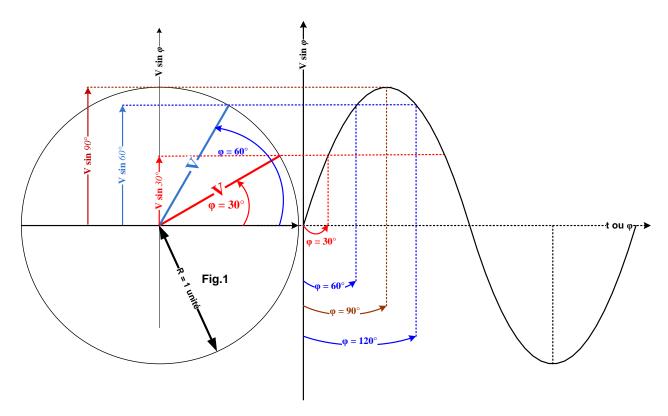


Détermination graphique par construction vectorielle du courant $\vec{I}_t = \vec{I}_2 + \vec{I}_3$

Représentez sur les oscillogrammes ci-dessous les courants i_t(t)instantanés des études N°1 et N°2

Correction

Correction


Rappels de trigonométrie :

Faisons décrire à un vecteur V un tour de cercle complet et considérons les 3 positions suivantes du vecteur :

$$\phi = 30^{\circ}$$
 $\phi = 60^{\circ}$ $\phi = 90^{\circ}$

La projection de V sur l'axe vertical représente la valeur V sin φ : avec $0 < \sin \varphi < 1$

- $\mathbf{V} \sin \phi =$ quand $\phi = 0^{\circ}$ car $\sin 0^{\circ} =$
- $\mathbf{V} \sin \mathbf{\varphi}$ atteind sa valeur lorsque $\mathbf{\varphi} = \mathbf{90}^{\circ}$ car sin $90^{\circ} = \mathbf{.}$
- Les points au dela de 90° se construisent par symétrie.

Construction d'une sinusoide

- Pour construire une sinusoide, il suffit de représenter sur un repère (0,x,y) la variation V sin ϕ en fonction de ϕ .
- La variation de l'amplitude de la courbe sur son axe vertical correspond aux variations de la tension dans le temps que l'on peut aussi exprimer en fonction de φ : **u** (**t**) **ou u** (φ)

L'équation de l'évolution de la tension sinusoïdale dans le temps que l'on notera **u** (t) est :

$$u(t) = \hat{V} \sin(\omega t)$$
 avec $\omega = 2 \pi f$

- ω: pulsation en radians par seconde (rad.s⁻¹)
- t: temps en secondes (s)
- \hat{V} : Tension maximale en volts (V)

La pulsation est le nombre de tours de cercle qu'effectue le vecteur V: cette rotation s'exprime en radians par secondes (rad.s⁻¹) Elle est repérée ω (oméga).

La pulsation du réseau français est donc de $\omega = 2 \pi f = 2 \times 50\pi = 100\pi = 314 \text{ rad.s}^{-1}$

On remarque que si l'on écrit l'expression en regroupant les termes de la manière suivante: $\omega = 2 \pi f = 50 \times 2\pi$ on fait apparaître les 50 tours de cercle qu'effectue le vecteur : les 50 pèriodes du réseau E.D.F

Relation permettant la représentation de la tension instantanée du réseau français

$$u(t) = \hat{V}\sin(\omega t)$$
 avec $\hat{V} = 230\sqrt{2} = 325V$
Donc $u(t) = 230\sqrt{2}\sin(314t)$ ou $u(t) = 325\sin(314t)$

- Pour représenter les variations de **u** (t) sur 50 périodes (1 seconde) il faudrait donner à t des valeurs comprises entre 0 et 1 seconde : 0 < t < 1s
- On ne représente en général que les variations de **u(t)** sur **une période**, c'est à dire pour des valeurs de t comprises entre 0 et 20 milli secondes : 0 < t < 20 ms

Tableau à compléter permettant la construction de la tension alternative sinusoïdale distribuée par le réseau E.D.F.

$u(t) = 230\sqrt{2} \sin 314t$ ou $u(\phi) = 230\sqrt{2} \sin \phi$							
φ (rad)	0	π/6	$\pi/3$	$\pi/2$	$2\pi/3$		
φ (deg)	0	30°	60°	90°	120°	150°	180°
Sinus φ	0	0,5	0,866	1	0,866	0,5	0
t (ms)	0						
(rad.s ⁻¹)							
\hat{V} (V)	325	325	325	325	325	325	325
u(t) (V)							

0	, .	
I onc	lucion	
GUILLI	lusion	
